Yeast Nutrition to Improve Fermentations

Maria Nachetova Business Area Manager - Europe

West Indies Rum & Spirits Producers' Association Inc.

Place: April 17, 2024

Date: Caribbean Distilling Seminar, St Lucia

- Yeast nutritional requirements
- Nitrogen sources and assimilation by yeast
- Feedstock nutrient availability
- Effect of nutrition on fermentation (kinetics and yield)

Importance of Nutrition in Fermentation

To sustain yeast growth and health: Viability and vitality

To sustain fermentation: Synthesis of ethanol and congeners

How Do Yeast Work?

- Incredibly complex pathway
- Takes lots of inputs
- Uses lots of enzymes!!!
- Enzymes are proteins, high turn over
- Building requires N
- Maintaining/Usage requires Mg, Zn, Ca, etc...

Yeast Nutritional Requirements

Carbohydrates

• Source of carbon and energy to generate biomass and metabolites

Nitrogen

- Biosynthesis of protein, enzymes, nucleic acids (anabolic role)
- Synthesis of higher alcohols and esters (catabolic role)

Vitamins: Coenzymes

Sterols and Fatty Acids: Membrane and ethyl esters synthesis

Inorganic Ions (Minerals and Metals)

- Sulfur: Synthesis of sulfur amino acids and coenzymes
- Phosphorous: Synthesis of nucleic acid, phospholipids and ATP
- Potassium: Osmoregulator, enzyme cofactor
- Magnesium: Enzyme cofactor, associated with yeast robustness to stresses
- Manganese and Zinc: Enzyme cofactors

Yeast Nutritional Requirements

Sugar feedstocks

Starch feedstocks

Different feedstocks have different composition and require different nutritional supplementations

Where Do We Add Nutrients?

Nitrogen and Inorganic Ions

Sources of Assimilable Nitrogen

YAN: Yeast Assimilable Nitrogen:

- Inorganic Nitrogen
 - Ammonium ions (NH₄⁺): MAP, DAP
- Organic Nitrogen: Free Amino Nitrogen (FAN)
 - Amino acids
 - Small peptides (up to pentapeptides)
- Proteins and longer oligopeptides cannot be assimilated by yeast (but there is an enzymatic solution for that see next slides!).
- Urea <u>should not</u> be used in beverage fermentations being a precursor of ethyl carbamate (carcinogenic). `

Ljungdahl P.O. et al. 2012 Genetics

Nitrogen Assimilation Profile

Ammonium and AA consumption during fermentation in synthetic medium

Crépin L. et al. 2012 AEM

Peptide consumption during fermentation in synthetic medium

Lallemand Study

Nitrogen Requirements are Strain Specific

As a rule of thumb: **200-250 ppm (mg/L) of YAN** is required by most strains for growth and efficient fermentations.

No nitrogen addition (70 ppm YAN from the mash)Addition of a nitrogen source (300 ppm YAN)

How Can Lack of Nutrition Impact the Yeast?

FAN in Starch Feedstocks

MB = Malted Barley

SG of mash bills shown in the graphs: 1.064 -1.090

 Nitrogen is naturally present in starch-based feedstocks, but its content is often insufficient or not readily available to yeast

 Malted grains are a source of active proteases.

How Do Proteases Work?

The proteases are enzymes that cleave proteins and polypeptides present in the mash.

 \rightarrow Gradual release of FAN during the fermentation resulting in faster fermentation kinetics

The proteases can also cleave starch-bound proteins liberating additional fermentable sugars. → **Higher yields**

Proteases: Rye Whisky Plant Trial

Plant Data, Rye SSF

Impact of Nitrogen Sources on Yeast Viability

- Inorganic nitrogen is assimilated rapidly at the beginning of fermentation
- Organic nitrogen is released throughout the entire fermentation time sustaining higher cell viability

Laboratory Data, Corn SSF

Impact of Nitrogen on Kinetics and Yield

82 mg/L FAN present in wheat mash

FAN in Sugar Feedstocks

- Sugar-based feedstocks generally benefit from nitrogen supplementation
- 200-250 ppm (mg/L) of YAN is required by most strains for growth and efficient fermentation

Role of Organic Nitrogen in the Biosynthesis of Higher Alcohols and Esters

Impact of the Nitrogen Source on Congeners

- Lab-scale study in industrial whisky corn mash
- Different ratios of diammonium phosphate and amino acids tested but same total YAN = 300 ppm
- Distillation in small copper alembics
- → The balance between organic and inorganic nitrogen impacts flavour and aroma congener production.

Role of Nitrogen in Sulfur Formation in Fermentation

 Accumulation of sulfur compounds in fermentation is substrate and nutrition dependent

۲

•

۲

Stewart, G.G. 2017. Fermentation

Nitrogen: Conclusions

- Nitrogen is limiting in most fermentations.
- Timely and adequate delivery of Nitrogen is one of the fundamentals in efficient fermentation.
- The majority of stuck or sluggish fermentations can be attributed to deficiencies in nitrogen.
- Ethanol/ beverage plants should target **200-250 ppm YAN** at the start of fermentation to provide adequate nitrogen.
- Fermentation rate is directly related to available nitrogen. Above 700-800 ppm does not appear to improve fermentation.

- We do not need for yeast to ferment
- We need some O₂ if we want a good synthesis of sterols and unsaturated fatty acids => better resistance of the yeast membrane during the last third of fermentation
- Fermentors and propagation remain anaerobic due to sugar levels.
 And the yeast savaging the oxygen.
- Our recommended rate is 5 -10 mg O₂/L per hour ONLY when yeast is growing.
- For 100,000 Litre PROP that is about 36 -72 litres per minute

Add O₂ correctly at the right moment

Phosphorus

- Yeast cell is about 1,8 % (from 1,4% to 2%) P
- Phosphates are essential for biosynthesis of nucleic acids, phospholipids and ATP
- Important for storage of cell energy reserves
- Used during the glycolysis
- Can be added in the form of DAP
- Phytases may help for liberation of useable phosphorous in grain mashes but too much liberation may make divalent cations unavailable

Laboratory data

Laboratory data Urea: 300 ppm FAN

Laboratory data

*targeting 300mg/L FAN in both DAP and Urea treatments

Laboratory data

Yeast Nutrition: Why Do Yeasts Need Metals and Vitamins?

Ethano

Yeast Nutrition in Fermentation: Minerals & Vitamins

Macroelements

• Phosphorus, sulfur, magnesium, potassium

Microelements

• Zinc, manganese, iron, calcium, cobalt, boron, cadmium, chromium, iodine, molybdenum, nickel, and vanadium

Key vitamins

- Biotin, pantothenic acid
- Inositol, thiamin, nicotinic acid and pyridoxine

Most of these are supplied by mash

Inorganic Ions in Sugar Feedstocks

°Brix used for the graphs: Molasses 25 °Brix Agave juice: 9-10 °Brix Agave syrup: 15 °Brix

Nutrition: Magnesium

- Absolutely essential (growth, fermentation and to resist stress factors)
- Cell Mg correlates with viability/vitality
- Maintains structural integrity of yeast in correlation with the phospholipides => Helps to insulate the cell against stress factors such as temperature, osmotic pressure and alcohol
- Required for glycolysis : for each phosphorylation reaction
- Stored in the yeast vacuole for a part.

Molasses Fermentation Challenges

- Mg²⁺:Ca²⁺ (Particularly with cane molasses)
 - Magnesium benefits glucose uptake during fermentation however, high calcium levels prevent sugar assimilation resulting in poor yeast health and reduced ethanol tolerance
 - Managing this ratio is important for fermentation

Nutrition: Magnesium vs Calcium

- Cells actively include Mg, but exclude Ca
- High growth demand for Mg, but not for Ca
- Mg required for many enzymes, Ca very few

Ca (which is not needed in high amounts by yeast) acts antagonistically toward Mg

Nutrition: Magnesium vs Calcium in Molasses

Therefore: Maintain a high Mg:Ca ratio in fermentation media

(Walker et al.)

Nutrition: Zinc

The most common trace element deficiency in yeast is ZINC

- Rapidly taken up by yeast
- Vacuole is main sink for zinc
- It should be around 0,4 ppm 1 ppm
- Zinc-limitation (<0,1 ppm) may cause slow or sluggish fermentations and poor yields
- Stabilizes cell membranes possible role in stress
- Result in consistent flavour profiles for beverage alcohol
- Zinc is a requirement for activity of alcohol dehydrogenase (ADH), the enzyme converting acetaldehyde to ethanol (and other enzymatic reactions)
- An excess can be problematic if similar amounts of Manganese are not present

Effect of Complex Rehydration Nutrient on Molasses Fermentations

Ferm °Brix: 29.5; pH = 5.1; FAN = 57 ppm 576 ppm urea added in fermentation Yeast pitch: 0.35 g/L; 35 °C, 48 hr fermentation Batch laboratory scale fermentations

Vitamins

- Vitamins are important regulators and cofactors of numerous metabolic processes
- Most strain have an absolute requirement for biotin, and many require pantothenate and inosiltol
- Grain mash should contain sufficient amount of vitamins
- Molasses: vitamins concentrations vary for cane and beet molasses
 - Biotin is normally present in great excess in cane molasses, but is normally deficient in beet molasses.
 - Pantothenate is normally borderline-to adequate in cane molasses, but is generally in excess in beet molasses

Nutrition for Consistency in Fermentation

- Nutrition allows for consistency among batches
- It is a good idea doing small scale tests at the reception of new batches of substrates!

Conclusions

- Nutrition is essential for yeast metabolism and therefore for efficient and consistent fermentation and congener biosynthesis.
- Different substrates have different composition and required different nutrition solutions.
- Organic and inorganic nitrogen sources are assimilated differently from yeast and affect yeast viability, metabolism and congener accumulation differently.
- Nitrogen supplementation must be balanced to maximize flavour congener synthesis and contribute in controlling off-flavour congener synthesis.

Thank you for your attention! Any Questions?

